Attention Enhanced U-Net for Building Extraction from Farmland Based on Google and WorldView-2 Remote Sensing Images

Author:

Li Chuangnong,Fu Lin,Zhu Qing,Zhu Jun,Fang Zheng,Xie Yakun,Guo Yukun,Gong Yuhang

Abstract

High-resolution remote sensing images contain abundant building information and provide an important data source for extracting buildings, which is of great significance to farmland preservation. However, the types of ground features in farmland are complex, the buildings are scattered and may be obscured by clouds or vegetation, leading to problems such as a low extraction accuracy in the existing methods. In response to the above problems, this paper proposes a method of attention-enhanced U-Net for building extraction from farmland, based on Google and WorldView-2 remote sensing images. First, a Resnet unit is adopted as the infrastructure of the U-Net network encoding part, then the spatial and channel attention mechanism module is introduced between the Resnet unit and the maximum pool and the multi-scale fusion module is added to improve the U-Net network. Second, the buildings found on WorldView-2 and Google images are extracted through farmland boundary constraints. Third, boundary optimization and fusion processing are carried out for the building extraction results on the WorldView-2 and Google images. Fourth, a case experiment is performed. The method in this paper is compared with semantic segmentation models, such as FCN8, U-Net, Attention_UNet, and DeepLabv3+. The experimental results indicate that this method attains a higher accuracy and better effect in terms of building extraction within farmland; the accuracy is 97.47%, the F1 score is 85.61%, the recall rate (Recall) is 93.02%, and the intersection of union (IoU) value is 74.85%. Hence, buildings within farming areas can be effectively extracted, which is conducive to the preservation of farmland.

Funder

National Natural Science Foundation of China

Sichuan Science and Technology Program

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference44 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3