End-to-End SAR Deep Learning Imaging Method Based on Sparse Optimization

Author:

Zhao SiyuanORCID,Ni JiachengORCID,Liang Jia,Xiong ShichaoORCID,Luo YingORCID

Abstract

Synthetic aperture radar (SAR) imaging has developed rapidly in recent years. Although the traditional sparse optimization imaging algorithm has achieved effective results, its shortcomings are slow imaging speed, large number of parameters, and high computational complexity. To solve the above problems, an end-to-end SAR deep learning imaging algorithm is proposed. Based on the existing SAR sparse imaging algorithm, the SAR imaging model is first rewritten to the SAR complex signal form based on the real-value model. Second, instead of arranging the two-dimensional echo data into a vector to continuously construct an observation matrix, the algorithm only derives the neural network imaging model based on the iteration soft threshold algorithm (ISTA) sparse algorithm in the two-dimensional data domain, and then reconstructs the observation scene through the superposition and expansion of the multi-layer network. Finally, through the experiment of simulation data and measured data of the three targets, it is verified that our algorithm is superior to the traditional sparse algorithm in terms of imaging quality, imaging time, and the number of parameters.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Sparse SAR Imaging Based on Non-Local Asymmetric Pixel-Shuffle Blind Spot Network;Remote Sensing;2024-06-28

2. DeepRED Based Sparse SAR Imaging;Remote Sensing;2024-01-05

3. MF-JMoDL-Net: A Sparse SAR Imaging Network for Undersampling Pattern Design Toward Suppressed Azimuth Ambiguity;IEEE Transactions on Geoscience and Remote Sensing;2024

4. Very High Resolution Synthetic Aperture Radar Systems and Imaging: A Review;IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing;2024

5. HPHR-SAR-Net: Hyperpixel High-Resolution SAR Imaging Network Based on Nonlocal Total Variation;IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3