Sparse SAR Imaging and Quantitative Evaluation Based on Nonconvex and TV Regularization

Author:

Xu ZhongqiuORCID,Zhang Bingchen,Zhou Guoru,Zhong Lihua,Wu Yirong

Abstract

Sparse signal processing has been used in synthetic aperture radar (SAR) imaging due to the maturity of compressed sensing theory. As a typical sparse reconstruction method, L1 regularization generally causes bias effects as well as ignoring region-based features. Our team has proposed to linearly combine the nonconvex penalty and the total variation (TV)-norm penalty as a compound regularizer in the imaging model, called nonconvex and TV regularization, which can not only reduce the bias caused by L1 regularization but also enhance point-based and region-based features. In this paper, we use the variable splitting scheme and modify the alternating direction method of multipliers (ADMM), generating a novel algorithm to solve the above optimization problem. Moreover, we analyze the radiometric properties of sparse-signal-processing-based SAR imaging results and introduce three indexes suitable for sparse SAR imaging for quantitative evaluation. In experiments, we process the Gaofen-3 (GF-3) data utilizing the proposed method, and quantitatively evaluate the reconstructed SAR image quality. Experimental results and image quality analysis verify the effectiveness of the proposed method in improving the reconstruction accuracy and the radiometric resolution without sacrificing the spatial resolution.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Low-Rank and Patch-Based Method for Enhanced Sparse ISAR Imaging;IEEE Sensors Journal;2023-05-01

2. Saliency-Based SAR Target Detection via Convolutional Sparse Feature Enhancement and Bayesian Inference;IEEE Transactions on Geoscience and Remote Sensing;2023

3. L-Hypersurface Based Parameters Selection in Composite Regularization Models With Application to SAR and TomoSAR Imaging;IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing;2023

4. HPHR-SAR-Net: Hyperpixel High-Resolution SAR Imaging Network Based on Nonlocal Total Variation;IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing;2023

5. Efficient Sparse MIMO SAR Imaging with Fast Iterative Method Based on Back Projection and Approximated Observation;2022 5th International Conference on Electronics and Electrical Engineering Technology (EEET);2022-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3