A 3D Reconstruction Framework of Buildings Using Single Off-Nadir Satellite Image

Author:

Zhao Chunhui,Zhang ChiORCID,Yan YimingORCID,Su NanORCID

Abstract

A novel framework for 3D reconstruction of buildings based on a single off-nadir satellite image is proposed in this paper. Compared with the traditional methods of reconstruction using multiple images in remote sensing, recovering 3D information that utilizes the single image can reduce the demands of reconstruction tasks from the perspective of input data. It solves the problem that multiple images suitable for traditional reconstruction methods cannot be acquired in some regions, where remote sensing resources are scarce. However, it is difficult to reconstruct a 3D model containing a complete shape and accurate scale from a single image. The geometric constraints are not sufficient as the view-angle, size of buildings, and spatial resolution of images are different among remote sensing images. To solve this problem, the reconstruction framework proposed consists of two convolutional neural networks: Scale-Occupancy-Network (Scale-ONet) and model scale optimization network (Optim-Net). Through reconstruction using the single off-nadir satellite image, Scale-Onet can generate water-tight mesh models with the exact shape and rough scale of buildings. Meanwhile, the Optim-Net can reduce the error of scale for these mesh models. Finally, the complete reconstructed scene is recovered by Model-Image matching. Profiting from well-designed networks, our framework has good robustness for different input images, with different view-angle, size of buildings, and spatial resolution. Experimental results show that an ideal reconstruction accuracy can be obtained both on the model shape and scale of buildings.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Learning Implicit Neural Representation for Satellite Object Mesh Reconstruction;Remote Sensing;2023-08-24

2. DV2BR: A Dual-View 3D Building Reconstruction Method From Aerial Images;2023 11th International Conference on Information Systems and Computing Technology (ISCTech);2023-07-30

3. Large-Scale LoD2 Building Modeling using Deep Multimodal Feature Fusion;Canadian Journal of Remote Sensing;2023-07-12

4. GEOP-Net: Shape Reconstruction of Buildings From LiDAR Point Clouds;IEEE Geoscience and Remote Sensing Letters;2023

5. DEEP LEARNING FOR 3D BUILDING RECONSTRUCTION: A REVIEW;The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences;2022-05-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3