Numerical Investigations of Tsunami Run-Up and Flow Structure on Coastal Vegetated Beaches

Author:

Zhang Hongxing,Zhang Mingliang,Xu Tianping,Tang Jun

Abstract

Tsunami waves become hazardous when they reach the coast. In South and Southeast Asian countries, coastal forest is widely utilized as a natural approach to mitigate tsunami damage. In this study, a depth-integrated numerical model was established to simulate wave propagation in a coastal region with and without forest cover. This numerical model was based on a finite volume Roe-type scheme, and was developed to solve the governing equations with the option of treating either a wet or dry wave front boundary. The governing equations were modified by adding a drag force term caused by vegetation. First, the model was validated for the case of solitary wave (breaking and non-breaking) run-up and run-down on a sloping beach, and long periodic wave propagation was investigated on a partially vegetated beach. The simulated results agree well with the measured data. Further, tsunami wave propagation on an actual-scale slope covered by coastal forest Pandanus odoratissimus (P. odoratissimus) and Casuarina equisetifolia (C. equisetifolia) was simulated to elucidate the influence of vegetation on tsunami mitigation with a different forest open gap. The numerical results revealed that coastal vegetation on sloping beach has significant potential to mitigate the impacts from tsunami waves by acting as a buffer zone. Coastal vegetation with open gaps causes the peak flow velocity at the exit of the gap to increase, and reduces the peak flow velocity behind the forest. Compared to a forest with open gaps in a linear arrangement, specific arrangements of gaps in the forest can increase the energy attenuation from tsunami wave. The results also showed that different cost-effective natural strategies in varying forest parameters including vegetation collocations, densities, and growth stages had significant impacts in reducing the severity of tsunami damage.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3