Holocene vegetation dynamics in response to climate change and hydrological processes in the Bohai region

Author:

Jinxia Chen,Xuefa Shi,Yanguang Liu,Shuqing Qiao,Shixiong Yang,Shijuan Yan,Huahua Lv,Jianyong Li,Xiaoyan Li,Chaoxin Li

Abstract

Abstract. Coastal vegetation both mitigates the damage inflicted by marine disasters on coastal areas and plays an important role in the global carbon cycle (i.e., blue carbon). Nevertheless, detailed records of changes in coastal vegetation composition and diversity in the Holocene, coupled with climate change and river evolution, remain unclear. To explore vegetation dynamics and their influencing factors on the coastal area of the Bohai Sea (BS) during the Holocene, we present high-resolution pollen and sediment grain size data obtained from a sediment core of the BS. The results reveal that two rapid and abrupt changes in salt marsh vegetation are linked with the river system changes. Within each event, a recurring pattern – starting with a decline in Cyperaceae, followed by an increase in Artemisia and Chenopodiaceae – suggests a successional process that is determined by the close relationship between Yellow River (YR) channel shifts and the wetland community dynamics. The phreatophyte Cyperaceae at the base of each sequence indicate lower saline conditions. Unchannelized river flow characterized the onset of the YR channel shift, caused a huge river-derived sediment accumulation in the floodplain and destroyed the sedges in the coastal depression. Along with the formation of a new channel, lateral migration of the lower channel stopped, and a new intertidal mudflat was formed. Pioneer species (Chenopodiaceae, Artemisia) were the first to colonize the bare zones of the lower and middle marsh areas. In addition, the pollen results revealed that the vegetation of the BS land area was dominated by broadleaved forests during the Early Holocene (8500–6500 BP) and by conifer and broadleaved forests in the Middle Holocene (6500–3500 BP), which was followed by an expansion of broadleaved trees (after 3500 BP). The pollen record indicated that a warmer Early and Late Holocene and colder Middle Holocene were consistent with previously reported temperature records for East Asia. The main driving factors of temperature variation in this region are insolation, the El Niño–Southern Oscillation and greenhouse gases forcing.

Funder

National Natural Science Foundation of China

Publisher

Copernicus GmbH

Subject

Paleontology,Stratigraphy,Global and Planetary Change

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3