Overview of Solid Backfilling Technology Based on Coal-Waste Underground Separation in China

Author:

Zhang Qiang,Zhang Jixiong,Wu Zhongya,Chen Yang

Abstract

China is the world’s largest coal producer country. However, large-scale coal mining has led to severe environmental pollution issues such as surface subsidence and gangue piling up. The gangue discharging amount has ranked the first in the world and coal mine enterprises are facing enormous discharging reduction pressure. This paper summarizes the research progress of the solid backfilling mining technology and then illustrates the realistic demands and significance of implementing underground coal-waste separation. It also focuses on the technical principles, systems and key equipment of the common underground coal-waste separation methods, such as the selective crushing method, the dense medium shallow groove method, the vibro-assisted jigging method and full-size water separation method and ray identification method. In addition, the selection steps of underground coal-waste separation method, the design process of large section separation chamber and the design principle of separation and backfilling system are proposed, finally, the mining-separating-backfilling + X for coal mining is put forward. By combining the technology of mining-separating-backfilling with other technologies, such as gob-side entry retaining with non-pillar mining, gas extraction, solid waste treatment, water protection mining, mining under buildings, railways and water bodies, the integrated mining methods, mining-separating-backfilling + setting pillars, gas drainage, treatment, protection and prevention methods are formed. It also introduced the ‘mining-separating-backfilling + gas extraction’ technology’s whole idea, system arrangement, separation equipment and practical engineering application effects based on the specific engineering case of pingmei no. 12 coal mine. The results indicate that the integration of underground coal-waste separation and solid backfilling technology could achieve gangue discharging reduction, underground washing and surface subsidence control. It is effective at realizing green mining.

Funder

the Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3