Hardware-Based Adaptive Terrain Mesh Using Temporal Coherence for Real-Time Landscape Visualization

Author:

Lee Eun-Seok,Shin Byeong-Seok

Abstract

In general, changes in society or the environment are expected depending on changes in terrain. The faster and more accurately these terrain changes can be observed, the faster and more accurately predictions can be made. Recently, three-dimensional (3D) terrain visualization programs, such as flight simulation, allow for interaction with various datasets to predict ecosystem influences in real time. Elaborate terrain data require a very large capacity. To render these large terrain data, the computing power of graphics devices cannot always satisfy the real-time conditions. Consequently, a large number of graphics devices in computing systems need to be replaced on a periodic basis. As the industry evolves, the replacement cycle of graphic devices shortens. To solve this problem, we present a novel acceleration approach for generating an adaptive terrain mesh using temporal coherence. By using our method, it is possible to prevent artifacts such as frame drop or screen flickering due to lack of computing power of the GPU in a specific viewing condition. Instead of generating the new terrain mesh on every frame, our method reuses the detail level of terrain mesh that was used in a previous frame. Therefore, it can maintain the frame coherency and improve the rendering speed. This allows the proposed method to more quickly provide more detailed information about the terrain to predict environmental changes more accurately on existing equipment. Thus, the proposed method can reduce the need to frequently replace GPUs. The proposed method can guarantee sufficient performance even with a resilient graphic device and can effectively slow down the replacement period of existing equipment.

Funder

Institute for Information and communications Technology Promotion

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Opportunities with Slippy Maps for Terrain Visualization in Virtual and Augmented Reality;Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications;2022

2. Real-time Rendering of Detailed Height Fields Using Hardware-based Ray Tracing Acceleration;Proceedings of the 32nd International Conference on Computer Graphics and Vision;2022

3. A Flexible Input Mapping System for Next-Generation Virtual Reality Controllers;Electronics;2021-09-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3