Author:
Lu Wei,Zeng Mengjie,Wang Ling,Luo Hui,Mukherjee Subrata,Huang Xuhui,Deng Yiming
Abstract
An improved anti-noise morphology vision navigation algorithm is proposed for intelligent tractor tillage in a complex agricultural field environment. At first, the two key steps of guided filtering and improved anti-noise morphology navigation line extraction were addressed in detail. Then, the experiments were carried out in order to verify the effectiveness and advancement of the presented algorithm. Finally, the optimal template and its application condition were studied for improving the image-processing speed. The comparison experiment results show that the YCbCr color space has minimum time consumption of 0.094 s in comparison with HSV, HIS, and 2R-G-B color spaces. The guided filtering method can effectively distinguish the boundary between the tillage soil compared to other competing vanilla methods such as Tarel, multi-scale retinex, wavelet-based retinex, and homomorphic filtering in spite of having the fastest processing speed of 0.113 s . The extracted soil boundary line of the improved anti-noise morphology algorithm has the best precision and speed compared to other operators such as Sobel, Roberts, Prewitt, and Log. After comparing different sizes of image templates, the optimal template with the size of 140 × 260 pixels could achieve high-precision vision navigation while the course deviation angle was not more than 7.5 ° . The maximum tractor speed of the optimal template and global template were 51.41 km / h and 27.47 km / h , respectively, which can meet the real-time vision navigation requirement of the smart tractor tillage operation in the field. The experimental vision navigation results demonstrated the feasibility of the autonomous vision navigation for tractor tillage operation in the field using the tillage soil boundary line extracted by the proposed improved anti-noise morphology algorithm, which has broad application prospect.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Jiangsu Province
Agricultural Machinery Three New Project
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献