Biomimetic Polymer Surfaces by High Resolution Molding of the Wings of Different Cicadas

Author:

Reid GrahamORCID,McCormack James C.ORCID,Habimana OlivierORCID,Bayer Fabian,Goromonzi Catherine,Casey EoinORCID,Cowley Aidan,Kelleher Susan M.

Abstract

Recent studies have shown that insect wings have evolved to have micro- and nanoscale structures on the wing surface, and biomimetic research aims to transfer such structures to application-specific materials. Herein, we describe a simple and cost-effective method of replica molding the wing topographies of four cicada species using UV-curable polymers. Different polymer blends of polyethylene glycol diacrylate and polypropylene glycol diacrylate were used as molding materials and a molding chamber was designed to precisely control the x, y, and z dimensions. Analysis by scanning electron microscopy showed that structures ranged from 148 to 854 nm in diameter, with a height range of 191–2368 nm, and wing patterns were transferred with high fidelity to the crosslinked polymer. Finally, bacterial cell studies show that the wing replicas possess the same antibacterial effect as the cicada wing from which they were molded. Overall, this work shows a quick and simple method for patterning UV-curable polymers without the use of expensive equipment, making it a highly accessible means of producing microstructured materials with biological properties.

Funder

Science Foundation Ireland

Irish Research Council

European Research Council

Publisher

MDPI AG

Subject

General Materials Science

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3