The Antibacterial Activity of Hierarchical Patterns of Nanostructured Silicon Fabricated Using Block Copolymer Micelle Lithography

Author:

McFadden Jessica1,Reid Graham2,Podhorska Lucia1,Rodriguez Brian J.3,Casey Eoin4,Kelleher Susan M.12ORCID

Affiliation:

1. School of Chemistry University College Dublin Dublin 4 D04 N2E5 Ireland

2. School of Chemical Sciences Dublin City University Glasnevin Dublin 9 D09 K20V Ireland

3. School of Physics and Conway Institute of Biomolecular and Biomedical Research University College Dublin Belfield Dublin 4 D04 C7X2 Ireland

4. School of Chemical and Bioprocess Engineering University College Dublin Dublin 4 D04 E1W1 Ireland

Abstract

Herein, the fabrication of four different nanostructured silicon surfaces by using a combination of block copolymer micelle lithography is reported on. Nanoparticle hard masks are evaluated for their ability to produce single‐height nanoneedle arrays. Low‐density (3 features μm−2) and high‐density (201 features μm−2) single‐height arrays are produced from Au or α‐Fe2O3 masks, respectively. These single‐height arrays are then used as substrates to produce nanostructured surfaces with two distinct nanoneedle arrays concerning height, diameter, and density. These dual‐height arrays have feature densities of 31 and 9 features μm−2. All surface types are then tested for their antibacterial activity against Gram‐negative bacteria, Pseudomonas fluorescens, over 24 h. No difference in surface coverage of P. fluorescens when comparing the structured silicon surface types to planar controls is observed. However, all of the structured silicon types show an increase in dead cell surface coverage ranging from 9 to 29% compared to planar controls. Density of the pillars appears to be more important than the difference in height of pillars when it comes to antibacterial activity. This work seeks to add to the literature by investigating the effects of feature density, as well as the impact of a dual‐height arrangement of nanoneedles against P. fluorescens.

Funder

Science Foundation Ireland

Irish Research Council

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3