Chattering-Suppressed Sliding Mode Control for Flexible-Joint Robot Manipulators

Author:

Cheng XinORCID,Liu HuashanORCID,Lu Wenke

Abstract

In this paper, sliding mode tracking control and its chattering suppression method are investigated for flexible-joint robot manipulators with only state measurements of joint actuators. First, within the framework of singular perturbation theory, the control objective of the system is decoupled into two typical tracking aims of a slow subsystem and a fast subsystem. Then, considering lumped uncertainties (including dynamics uncertainties and external disturbances), a composite chattering-suppressed sliding mode controller is proposed, where a smooth-saturation-function-contained reaching law with adjustable saturation factor is designed to alleviate the inherent chattering phenomenon, and a radial basis function neural network (RBFNN)-based soft computing strategy is applied to avoid the high switching gain that leads to chattering amplification. Simultaneously, an efficient extended Kalman filter (EKF) with respect to a new state variable is presented to enable the closed-loop tracking control with neither position nor velocity measurements of links. In addition, an overall analysis on the asymptotic stability of the whole control system is given. Finally, numerical examples verify the superiority of the dynamic performance of the proposed control approach, which is well qualified to suppress the chattering and can effectively eliminate the undesirable effects of the lumped uncertainties with a smaller switching gain reduced by 80% in comparison to that in the controller without RBFNN. The computational efficiency of the proposed EKF increased by about 26%.

Funder

The Shanghai Rising-Star Program under Grant

Publisher

MDPI AG

Subject

Control and Optimization,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3