Abstract
Cassava is one of the most important sources of energy. To meet the growing demand, genetic improvement is of utmost importance. Its cross-pollinating nature limits the opportunity of exploitation of hybrid vigor and demands the development of homozygous lines through doubled-haploid technologies. The problems in callus-mediated embryogenesis, such as longer processing time and genetically unstable nature, can be overcome by direct embryogenesis. Conditions to produce embryos directly from microspores in cultured anthers were optimized. The optimum stress pretreatment condition was 40 °C for 6 h after culturing the anthers into the induction medium. For proembryo formation, 2% sucrose and 5 mg/l 2,4-dichlorophenoxyacetic acid (2,4-D) or 1 mg/l 1-naphthaleneacetic acid were optimum. Globular embryos were formed by subculturing proembryos into the medium with 0.5 mg/l 2,4-D and 5 mg/l 6-benzylaminopurine after two weeks of culturing. Light microscopy of cultured anthers demonstrated the formation of multicellular structures and their further development into proembryos. Microscopic studies showed proembryos emerging through the damaged anther wall. Monoallelic banding in simple sequence repeat (SSR) analysis indicated homozygous or haploid states in some of the originated embryos. The conditions optimized in this study were effective in the early development of direct embryos after two weeks of culture initiation. This is the first report of the formation of direct embryos in cultured anthers of cassava.
Funder
Bill and Melinda Gates Foundation
Subject
Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献