Effects of Elevated Carbon Dioxide and Chronic Warming on Nitrogen (N)-Uptake Rate, -Assimilation, and -Concentration of Wheat

Author:

Jayawardena Dileepa M.,Heckathorn Scott A.,Boldt Jennifer K.ORCID

Abstract

The concentration of nitrogen (N) in vegetative tissues is largely dependent on the balance among growth, root N uptake, and N assimilation. Elevated CO2 (eCO2) plus warming is likely to affect the vegetative-tissue N and protein concentration of wheat by altering N metabolism, but this is poorly understood. To investigate this, spring wheat (Triticum aestivum) was grown for three weeks at two levels of CO2 (400 or 700 ppm) and two temperature regimes (26/21 or 31/26 °C, day/night). Plant dry mass, plant %N, protein concentrations, NO3− and NH4+ root uptake rates (using 15NO3 or 15NH4), and whole-plant N- and NO3--assimilation were measured. Plant growth, %N, protein concentration, and root N-uptake rate were each significantly affected only by CO2, while N- and NO3−-assimilation were significantly affected only by temperature. However, plants grown at eCO2 plus warming had the lowest concentrations of N and protein. These results suggest that one strategy breeding programs can implement to minimize the negative effects of eCO2 and warming on wheat tissue N would be to target the maintenance of root N uptake rate at eCO2 and N assimilation at higher growth temperatures.

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3