Metabolic Profiling of Primary Metabolites and Galantamine Biosynthesis in Wounded Lycoris radiata Callus

Author:

Park Chang Ha,Sathasivam RamarajORCID,Nguyen Bao Van,Baek Seung-AORCID,Yeo Hyeon Ji,Park Ye Eun,Kim Haeng HoonORCID,Kim Jae KwangORCID,Park Sang UnORCID

Abstract

Plants are continuously exposed to abiotic and biotic factors that lead to wounding stress. Different plants exhibit diverse defense mechanisms through which various important metabolites are synthesized. Humans can exploit these mechanisms to improve the efficacy of existing drugs and to develop new ones. Most previous studies have focused on the effects of wounding stress on the different plant parts, such as leaves, stems, and roots. To date, however, no study has investigated the accumulation of primary and galantamine content following the exposure of a callus to wounding stress. Therefore, in the present study, we exposed Lycoris radiata calli to wounding stress and assessed the expression levels of several genes involved in metabolic pathways at various time points (0, 3, 6, 12, 24, 48, 72, and 96 h of exposure). Furthermore, we quantify the primary and galantamine content using gas chromatography–time-of-flight mass spectrometry and the high-performance liquid chromatography qRT-PCR analysis of eight galantamine pathway genes (LrPAL-2, LrPAL-3, LrC4H-2, LrC3H, LrTYDC2, LrN4OMT, LrNNR, and LrCYP96T) revealed that seven genes, except LrN4OMT, were significantly expressed following exposure to wounding stress. Galantamine contents of calli after 3, 6, 12, 24, 48, 72, and 96 h of exposure were respectively 2.5, 2.5, 3.5, 3.5, 5.0, 5.0, and 8.5 times higher than that after 0 h of exposure. Furthermore, a total of 48 hydrophilic metabolites were detected in the 0 h exposed callus and 96 h exposed callus using GC-TOFMS. In particular, a strong positive correlation between galantamine and initial precursors, such as phenylalanine and tyrosine, was observed.

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3