Non-Destructive Prediction of Titratable Acidity and Taste Index Properties of Gala Apple Using Combination of Different Hybrids ANN and PLSR-Model Based Spectral Data

Author:

Sharabiani Vali Rasooli,Sabzi Sajad,Pourdarbani RaziehORCID,Solis-Carmona Edgardo,Hernández-Hernández MarioORCID,Hernández-Hernández José Luis

Abstract

Non-destructive estimation of the internal properties of fruits and vegetables is very important, because better management can be provided for subsequent operations. Researchers and scientists around the world are focusing on non-destructive methods because if they are developed and commercialized, there will be an impressive change in the food industry. In this regard, this paper aims to present a non-destructive method based on Vis-NIR spectral data. The different stages of the proposed algorithm are: (1) Collection of samples of Gala apples, (2) Spectral data extraction by spectroscopy, (3) Pre-processing of spectral data, (4) Measurement of chemical properties of titratable acidity (TA) and taste index, (5) Selection of key wavelengths using hybrid artificial neural network-firefly algorithm (ANN-FA), (6) Non-destructive estimation of the properties using two methods of hybrid ANN- Particle swarm optimization algorithm and partial least squares regression. For considering the reliability of methods for estimating the chemical properties, the prediction operation was executed in 300 iterations. The results represented that the mean and standard deviation of the correlation coefficient and the root mean square error of hybrid ANN-PSO and PLSR for TA were 0.9095 ± 0.0175, 0.0598 ± 0.0064, 0.834 ± 0.0313 and 0.0761 ± 0.0061 respectively. These values for taste index were 0.918 ± 0.02, 3.2 ± 0.39, 0.836 ± 0.033 and 4.09 ± 0.403, respectively. Therefore, it can be concluded that the hybrid ANN-PSO has a better performance for non-destructive prediction of the two mentioned chemical properties than the PLSR method. In general, the proposed method can predict the chemical properties of TA and taste index non-destructively, which is very useful for mechanized harvesting and management of post-harvest operation.

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

Reference33 articles.

1. Collection, Maintenance, Characterization, and Utilization of Wild Apples of Central Asia Horticultural Reviews;Forsline,2002

2. Automatic detection of greenhouse plants pests by image analysis;Pourdarbani;Tarım Makinaları Bilimi Dergisi,2011

3. Exploring the best model for sorting blood orange using ANFIS method;Sabzi;Agric. Eng. Int. CIGR J.,2013

4. Automatic Classification of Chickpea Varieties Using Computer Vision Techniques

5. Comparison of Different Classifiers and the Majority Voting Rule for the Detection of Plum Fruits in Garden Conditions

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3