Seed Dormancy: Molecular Control of Its Induction and Alleviation

Author:

Matilla Angel J.

Abstract

A set of seed dormancy traits is included in this Special Issue. Thus, DELAY OF GERMINATION1 (DOG1) is reviewed in depth. Binding of DOG1 to Protein Phosphatase 2C ABSCISIC ACID (PP2C ABA) Hypersensitive Germination (AHG1) and heme are independent processes, but both are essential for DOG1’s function in vivo. AHG1 and DOG1 constitute a regulatory system for dormancy and germination. DOG1 affects the ABA INSENSITIVE5 (ABI5) expression level. Moreover, reactive oxygen species (ROS) homeostasis is linked with seed after-ripening (AR) process and the oxidation of a portion of seed long-lived (SLL) mRNAs seems to be related to dormancy release. The association of SLL mRNAs to monosomes is required for their transcriptional upregulation at the beginning of germination. Global DNA methylation levels remain stable during dormancy, decreasing when germination occurs. The remarkable intervention of auxin in the life of the seed is increasingly evident year after year. Here, its synergistic cooperation with ABA to promote the dormancy process is extensively reviewed. ABI3 participation in this process is critical. New data on the effect of alternating temperatures (ATs) on dormancy release are contained in this Special Issue. On the one hand, the transcriptome patterns stimulated at ATs comprised ethylene and ROS signaling and metabolism together with ABA degradation. On the other hand, a higher physical dormancy release was observed in Medicago truncatula under 35/15 °C than under 25/15 °C, and genome-wide association analysis identified 136 candidate genes related to secondary metabolite synthesis, hormone regulation, and modification of the cell wall. Finally, it is suggested that changes in endogenous γ-aminobutyric acid (GABA) may prevent chestnut germination, and a possible relation with H2O2 production is considered.

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3