A Low-Power CMOS Wireless Acoustic Sensing Platform for Remote Surveillance Applications

Author:

Wang YongORCID,Zhou Ranran,Liu Zhenyue,Yan Bingbo

Abstract

A low-power wireless acoustic sensing platform for remote surveillance applications based on a 180 nm CMOS technology is proposed in this paper. The audio signal, which is acquired by a microphone, is first amplified and filtered. Then, the analog signal is converted to a digital signal by a 10-bit analog-to-digital converter (ADC). A digital automatic gain control module is integrated to obtain an optimal input of the ADC. The digital signal is modulated and transmitted at the 433 MHz ISM band after being repacked and encoded. To save power for portable applications, the chip switches to standby mode when no audio is detected. The wireless sensing platform occupies a chip area of 1.76 mm 2 . The supply voltage is 2.5 V for the power amplifier and 1.8 V for other circuits. The measured maximum output power is 5.7 dBm and the transmission distance is over 500 m for real application scenarios. The chip consumes 25.1 mW power in normal work mode and 0.058 mW in standby mode. Compared to existing wireless acoustic sensors, the proposed wireless acoustic sensing platform can achieve features such as compactness, power efficiency, and reliability.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3