Effect of Dynamic Recrystallization on Microstructural Evolution in B Steels Microalloyed with Nb and/or Mo

Author:

Zurutuza Irati,Isasti Nerea,Detemple EricORCID,Schwinn Volker,Mohrbacher HardyORCID,Uranga PelloORCID

Abstract

The dynamic recrystallization behavior of ultra-high strength boron-microalloyed steels optionally alloyed with niobium and molybdenum is analyzed in this paper. Multipass torsion tests were performed to simulate plate rolling conditions followed by direct quenching. The influence of alloy composition on the transformed microstructure was evaluated by means of EBSD, thereby characterizing the morphology of the austenite grain morphology after roughing and finishing passes. The results indicated that for Nb-microalloyed steel, partial dynamic recrystallization occurred and resulted in local clusters of fine-sized equiaxed grains dispersed within the pancaked austenitic structure. A recrystallized austenite fraction appeared and transformed into softer phase constituents after direct quenching. The addition of Mo was shown to be an effective means of suppressing dynamic recrystallization. This effect of molybdenum in addition to its established hardenability effects hence safeguards the formation of fully martensitic microstructures, particularly in direct quenching processes. Additionally, the circumstances initiating dynamic recrystallization were studied in more detail, and the interference of the various alloying elements with the observed phenomena and the potential consequences of dynamic recrystallization before quenching are discussed.

Funder

International Molybdenum Association - IMOA

Publisher

MDPI AG

Subject

General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3