Fundamental Study on Electric Arc Furnace Steelmaking with Submerged Carbon Powder Injection with CO2-O2 Mixed Gas

Author:

Li Jianjun12,Wei Guangsheng34,Han Chengjin3

Affiliation:

1. National Engineering Research Center of Continuous Casting Technology, China Iron & Steel Research Institute Group, Beijing 100081, China

2. Metallurgical Corporation of China Co., Ltd., Beijing 100028, China

3. School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China

4. Liaoning Academy of Materials, Shenyang 110000, China

Abstract

The technology of submerged carbon powder injection with CO2 and O2 mixed gas (SCPI-COMG) is a new type of powder injection technology. It can increase the molten bath carbon content and improve the molten steel quality by injecting carbon powder directly into the molten steel with CO2 and O2 mixed gas. To optimize the process parameters of this novel technology, the mechanism of this technology and the effect of SCPI-COMG on EAF steelmaking were investigated in this study. Based on an induction furnace experiment, the effects of molten bath carburization and fluid flow on the scrap melting were analyzed. A mathematical model of the axis of gas jets in liquid steel was built to analyze the impact behaviors of gas jets in liquid steel. Based on the results of this theoretical model, for a gas jet in liquid steel, with α ≥ 20°, the horizontal inject distance decreases with α increasing and with 0° ≤ α ≤ 20°, the horizontal inject distance increases with α increasing. Finally, based on the newly built materials and energy balance model of EAF steelmaking with SCPI-COMG, the influences of the gas-solid parameters on the EAF steelmaking technical indexes were also analyzed.is very useful for optimizing the process parameters of EAF steelmaking with SCPI-COMG. The results of this study are very useful to optimize the process parameters of EAF steelmaking with SCPI-COMG of Gas Jet in Liquid Steel.

Funder

National Nature Science Foundation of China

Key R&D Projects of Jiangxi Province

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3