Author:
Li Chenpu,Xing Qianjian,Ma Zhenguo
Abstract
In the field of visual tracking, trackers based on a convolutional neural network (CNN) have had significant achievements. The fully-convolutional Siamese (SiamFC) tracker is a typical representation of these CNN trackers and has attracted much attention. It models visual tracking as a similarity-learning problem. However, experiments showed that SiamFC was not so robust in some complex environments. This may be because the tracker lacked enough prior information about the target. Inspired by the key idea of a Staple tracker and Kalman filter, we constructed two more models to help compensate for SiamFC’s disadvantages. One model contained the target’s prior color information, and the other the target’s prior trajectory information. With these two models, we design a novel and robust tracking framework on the basis of SiamFC. We call it Histogram–Kalman SiamFC (HKSiamFC). We also evaluated HKSiamFC tracker’s performance on dataset of the online object tracking benchmark (OTB) and Temple Color (TC128), and it showed quite competitive performance when compared with the baseline tracker and several other state-of-the-art trackers.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献