Energy-Saving Performance and Production Accuracy of the Direct-Pressure Tire Curing Technology with an Expandable Steel Internal Mold

Author:

Zhang Jinyun,Wang Bogang,Liu Xiaoying,Cheng LishengORCID,Yan Hua,Ding Quanyong,Tan JingORCID,Yang Weimin

Abstract

Due to the low thermal conductivity and low rigidity of the rubber bladder, the traditional tire curing process faces problems such as low efficiency, high energy consumption, and low production accuracy. To eliminate defects, this work presents a novel direct-pressure curing technology (DPCT) with a steel internal mold heated by electromagnetic induction. Special equipment featuring this novel technology was developed and used for trial-production of tire with a specific size. The energy consumption of sample tires was measured for comparison between the new technology and the traditional one. Nonuniformity and unbalance of tires are tested, meanwhile, physical properties of tread and sidewall parts of cured tires are tested. Furthermore, a finite element analysis (FEA) is carried out to investigate the heating rate of the new curing technology and to optimize the curing process. According to the results, with the new curing technology, the energy consumption per cure cycle is cut down by about 86%, while the curing efficiency and the tensile strength of sidewall part of the cured tire are improved by 22.5% and increased by 13.9%, respectively. In addition, the radial force variation (RFV), couple unbalance mass and curing temperature difference are also reduced by 16.8%, 37%, and 8 °C, respectively. These results suggest that DPCT has excellent energy-saving performance and production accuracy.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Energy Efficiency of the Vulcanization Process of a Bicycle Tyre;International Journal of Precision Engineering and Manufacturing-Green Technology;2023-03-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3