Energy Efficiency of the Vulcanization Process of a Bicycle Tyre

Author:

Pentakota Lohit Kumar,Albertelli PaoloORCID,Strano MatteoORCID

Abstract

AbstractThe production of tyres is one of the most energy consuming manufacturing activities in the rubber sector. In the production cycle of a tyre, the curing operation has the maximum energy loss. This is mostly due to the extensive use of steam as a source of heat and pressure in the vulcanization process. To the author’s knowledge, no scientific work is available in the literature where the energy efficiency of a tyre vulcanization press is estimated by means of a comprehensive model of all main components, including the moulds, the press with its heated plates, the bladder and, of course, the tyre. The present work aims at filling this gap. First, the press used for developing the model is described, along with its components and its typical product, a bicycle tyre. The instruments used for measuring flow rates, temperatures and pressures are also listed. Then, a numerical model is presented, that predicts the energy transfers occurring in the vulcanization press during a full process cycle. The numerical model, developed with the software Simcenter Amesim 2021.1, has been validated by means of measurements taken at the press. The results indicate that the amount of energy which is actually consumed by the tyre for its reticulation process amounts to less than 1% of the total energy expenditure. The paper demonstrates that the tyre industry is in urgent need of an electrification conversion of the traditional steam-based processes.

Funder

Regione Lombardia

Politecnico di Milano

Publisher

Springer Science and Business Media LLC

Subject

Management of Technology and Innovation,Industrial and Manufacturing Engineering,Mechanical Engineering,General Materials Science,Renewable Energy, Sustainability and the Environment

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3