Abstract
Currently, since the model of a driverless bus is not clear, it is difficult for most traditional path tracking methods to achieve a trade-off between accuracy and stability, especially in the case of driverless buses. In terms of solving this problem, a path-tracking controller based on a Fuzzy Pure Pursuit Control with a Front Axle Reference (FPPC-FAR) is proposed in this paper. Firstly, the reference point of Pure Pursuit is moved from the rear axle to the front axle. It relieves the influence caused by the ignorance of the bus’s lateral dynamic characteristics and improves the stability of Pure Pursuit. Secondly, a fuzzy parameter self-tuning method is applied to improve the accuracy and robustness of the path-tracking controller. Thirdly, a feedback-feedforward control algorithm is devised for velocity control, which enhances the velocity tracking efficiency. The proportional-integral (PI) controller is indicated for feedback control, and the gravity acceleration component in the car’s forward direction is used in feedforward control. Finally, a series of experiments is conducted to illustrate the excellent performances of proposed methods.
Funder
National Key Research and Development Program of China Stem Cell and Translational
the National Natural Science Foundation of China
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
28 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献