Design and application of finite‐time tracking control for autonomous ground vehicle affected by external disturbances

Author:

Chen Zongliang1ORCID,Pan Shuguo1,Tang Xinhua1,Meng Xiaolin1,Gao Wang1,Yu Baoguo2

Affiliation:

1. School of Instrument Science and Engineering Southeast University Nanjing China

2. The State Key Laboratory of Satellite Navigation System and Equipment Technology Shijiazhuang China

Abstract

AbstractPath tracking plays a critical role in autonomous driving for autonomous ground vehicle (AGV). However, AGV faces challenges in accurate tracking and chatter reduction due to external disturbances, making it difficult to meet the tracking performance requirements. Currently, sliding mode control (SMC) and disturbances observer are primarily employed for disturbance estimation. However, ensuring finite‐time robust control remains a significant challenge. To ensure rapid convergence of tracking errors and effective disturbance rejection, this paper proposed a novel non‐singular fast terminal sliding mode (NFTSM) control scheme based on finite‐time disturbance observation (FDO). First, a novel NFTSM controller based on AGV dynamic model is developed to achieve fast convergence of tracking errors. Then, to mitigate disturbances effects and suppress chatter, an innovative FDO method is employed. Finally, based on FDO, the NFTSM‐FDO establishes a control scheme that enhances disturbances suppression and accelerates convergence. The simulation and experimental results demonstrate the innovation of the proposed method. Compared with other SMC methods, the results validate the effectiveness and advantages of the proposed approach, exhibiting fast convergence and superior tracking performance.

Funder

National Key Research and Development Program of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3