A Novel Multi Algorithm Approach to Identify Network Anomalies in the IoT Using Fog Computing and a Model to Distinguish between IoT and Non-IoT Devices

Author:

Alzahrani Rami J.12ORCID,Alzahrani Ahmed1ORCID

Affiliation:

1. Department of Computer Science, Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah 21589, Saudi Arabia

2. Department of Computer Science, Faculty of Computer Science and Information Technology, Al-Baha University, Al-Baha 65799, Saudi Arabia

Abstract

Botnet attacks, such as DDoS, are one of the most common types of attacks in IoT networks. A botnet is a collection of cooperated computing machines or Internet of Things gadgets that criminal users manage remotely. Several strategies have been developed to reduce anomalies in IoT networks, such as DDoS. To increase the accuracy of the anomaly mitigation system and lower the false positive rate (FPR), some schemes use statistical or machine learning methodologies in the anomaly-based intrusion detection system (IDS) to mitigate an attack. Despite the proposed anomaly mitigation techniques, the mitigation of DDoS attacks in IoT networks remains a concern. Because of the similarity between DDoS and normal network flows, leading to problems such as a high FPR, low accuracy, and a low detection rate, the majority of anomaly mitigation methods fail. Furthermore, the limited resources in IoT devices make it difficult to implement anomaly mitigation techniques. In this paper, an efficient anomaly mitigation system has been developed for the IoT network through the design and implementation of a DDoS attack detection system that uses a statistical method that combines three algorithms: exponentially weighted moving average (EWMA), K-nearest neighbors (KNN), and the cumulative sum algorithm (CUSUM). The integration of fog computing with the Internet of Things has created an effective framework for implementing an anomaly mitigation strategy to address security issues such as botnet threats. The proposed module was evaluated using the Bot-IoT dataset. From the results, we conclude that our model has achieved a high accuracy (99.00%) with a low false positive rate (FPR). We have also achieved good results in distinguishing between IoT and non-IoT devices, which will help networking teams make the distinction as well.

Funder

King Abdulaziz University

Publisher

MDPI AG

Subject

Control and Optimization,Computer Networks and Communications,Instrumentation

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3