IoT Security Detection Method Based on Multifeature and Multineural Network Fusion

Author:

Zhu Zihao1ORCID,Zhang Leilei1ORCID,Liu Jianhua1ORCID,Ying Xianer1ORCID

Affiliation:

1. Department of Computer Science and Engineering, Shaoxing University, Shaoxing 312000, China

Abstract

IoT security detection plays an important role in securing the IoT ecosystem. The current detection systems suffer from poor fault tolerance and inefficient detection results. To address the IoT security vulnerability, the paper designs a multifeature fusion-based IoT security detection model to simulate an attacker sending test commands to IoT nodes. Firstly, the data collection algorithm is introduced, and the collected dataset is analyzed by three neural network models, namely, RNN, LSTM, and GRU, respectively. The best scoring model is selected as the classifier to identify vulnerabilities and achieve IoT security detection.

Funder

Natural Science Foundation of Zhejiang Province

Publisher

Hindawi Limited

Subject

Computer Networks and Communications,Information Systems

Reference31 articles.

1. Malicious mining web page detection and forensics based on multi-feature recognition;Z. Huang;Netinfo Security,2021

2. Research on blockchain-based identity authentication scheme in social networks;X. Yu,2020

3. Detection of malicious code variants based on deep learning;Z. Cui;IEEE Transactions on Industrial Informatics,2018

4. Combined power generation and electricity storage device using deep learning and internet of things technologies;C. Iwendi;Energy Reports,2022

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3