Abstract
Wide expansion of smartphones triggered a rapid demand for precise localization that can meet the requirements of location-based services. Although the global positioning system is widely used for outdoor positioning, it cannot provide the same accuracy for the indoor. As a result, many alternative indoor positioning technologies like Wi-Fi, Bluetooth Low Energy (BLE), and geomagnetic field localization have been investigated during the last few years. Today smartphones possess a rich variety of embedded sensors like accelerometer, gyroscope, and magnetometer that can facilitate estimating the current location of the user. Traditional geomagnetic field-based fingerprint localization, although it shows promising results, it is limited by the fact that various smartphones have embedded magnetic sensors from different manufacturers and the magnetic field strength that is measured from these smartphones vary significantly. Consequently, the localization performance from various smartphones is different even when the same localization approach is used. So devising an approach that can provide similar performance with various smartphones is a big challenge. Contrary to previous works that build the fingerprint database from the geomagnetic field data of a single smartphone, this study proposes using the geomagnetic field data collected from multiple smartphones to make the geomagnetic field pattern (MP) database. Many experiments are carried out to analyze the performance of the proposed approach with various smartphones. Additionally, a lightweight threshold technique is proposed that can detect user motion using the acceleration data. Results demonstrate that the localization performance for four different smartphones is almost identical when tested with the database made using the magnetic field data from multiple smartphones than that of which considers the magnetic field data from only one smartphone. Moreover, the performance comparison with previous research indicates that the overall performance of smartphones is improved.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
26 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献