Damage Diversity as a Metric of Structural Complexity after Forest Wind Disturbance

Author:

Peterson Chris

Abstract

This study presents a new metric for quantifying structural complexity using the diversity of tree damage types in forests that have experienced wind disturbance. Structural complexity studies of forests have to date not incorporated any protocol to address the variety of structural damage types experienced by trees in wind disturbances. This study describes and demonstrates such a protocol. Damage diversity, defined as the richness and evenness of types of tree damage, is calculated analogously to species diversity using two common indices, and termed a ‘Shannon Damage Heterogeneity Index’ (Sh-DHI) and an inverse Simpson Damage Heterogeneity Index (iSi-DHI). The two versions of the DHI are presented for >400 plots across 18 distinct wind disturbed forests of eastern North America. Relationships between DHI and pre-disturbance forest species diversity and size variability, as well as wind disturbance severity, calculated as the fraction of basal area downed in a wind disturbance event, are examined. DHIs are only weakly related to pre-disturbance tree species diversity, but are significantly positively related to pre-disturbance tree size inequality (size diversity). Damage diversity exhibits a robust curvilinear relationship to severity; both versions of the DHI show peaks at intermediate levels of wind disturbance severity, suggesting that in turn structural complexity may also peak at intermediate levels of severity.

Funder

National Science Foundation

Publisher

MDPI AG

Subject

Forestry

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The fate of remnant trees after wind disturbances in boreal and temperate forests;Frontiers in Forests and Global Change;2024-06-14

2. Disturbance theory for ecosystem ecologists: A primer;Ecology and Evolution;2024-05-30

3. Forest disturbances;Future Forests;2024

4. Hurricane wind regimes for forests of North America;Proceedings of the National Academy of Sciences;2023-10-10

5. Intermediate-severity disturbance impacts in a mixedwood forest: A multi-scale analysis;Forest Ecology and Management;2022-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3