Disturbance theory for ecosystem ecologists: A primer

Author:

Gough Christopher M.1ORCID,Buma Brian23,Jentsch Anke4ORCID,Mathes Kayla C.1,Fahey Robert T.5ORCID

Affiliation:

1. Department of Biology, College of Humanities & Sciences Virginia Commonwealth University Richmond Virginia USA

2. Environmental Defense Fund Boulder Colorado USA

3. Department of Integrative Biology University of Colorado Denver Denver Colorado USA

4. Department of Disturbance Ecology and Vegetation Dynamics, Bayreuth Center of Ecology and Environmental Research (BayCEER) University of Bayreuth Bayreuth Germany

5. Department of Natural Resources and the Environment & Center for Environmental Sciences and Engineering University of Connecticut Storrs Connecticut USA

Abstract

AbstractUnderstanding what regulates ecosystem functional responses to disturbance is essential in this era of global change. However, many pioneering and still influential disturbance‐related theorie proposed by ecosystem ecologists were developed prior to rapid global change, and before tools and metrics were available to test them. In light of new knowledge and conceptual advances across biological disciplines, we present four disturbance ecology concepts that are particularly relevant to ecosystem ecologists new to the field: (a) the directionality of ecosystem functional response to disturbance; (b) functional thresholds; (c) disturbance–succession interactions; and (d) diversity‐functional stability relationships. We discuss how knowledge, theory, and terminology developed by several biological disciplines, when integrated, can enhance how ecosystem ecologists analyze and interpret functional responses to disturbance. For example, when interpreting thresholds and disturbance–succession interactions, ecosystem ecologists should consider concurrent biotic regime change, non‐linearity, and multiple response pathways, typically the theoretical and analytical domain of population and community ecologists. Similarly, the interpretation of ecosystem functional responses to disturbance requires analytical approaches that recognize disturbance can promote, inhibit, or fundamentally change ecosystem functions. We suggest that truly integrative approaches and knowledge are essential to advancing ecosystem functional responses to disturbance.

Funder

National Science Foundation

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3