Modeling of Spiral Wound Membranes for Gas Separations—Part II: Data Reconciliation for Online Monitoring

Author:

de Menezes Diego Queiroz FariaORCID,de Sá Marília Caroline CavalcanteORCID,Fontoura Tahyná BarbalhoORCID,Anzai Thiago Koichi,Diehl Fabio Cesar,Thompson Pedro Henrique,Pinto Jose CarlosORCID

Abstract

The present work presents a methodology based on data reconciliation to monitor membrane separation processes reliably, online and in real time for the first time. The proposed methodology was implemented in accordance with the following steps: data acquisition; data pre-treatment; data characterization; data reconciliation; gross error detection; and critical evaluation of measured data with a soft sensor. The acquisition of data constituted the slowest stage of the monitoring process, as expected in real-time applications. The pre-treatment stage was fundamental to assure the robustness of the code and the initial characterization of collected data was carried out offline. The characterization of the data showed that steady-state modeling of the process would be appropriate, also allowing the implementation of faster numerical procedures for the data reconciliation step. The data reconciliation step performed well, quickly and consistently. Thus, data reconciliation allowed the estimation of unmeasured variables, playing the role of a soft sensor and allowing the future installation of a digital twin. Additionally, monitoring of measurement bias constituted a tool for measurement diagnosis. As shown in the manuscript, the proposed methodology can be successfully implemented online and in real time for monitoring of membrane separation processes, as shown through a real dashboard web application developed for monitoring of an actual industrial site.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Reference48 articles.

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3