The Impact of Salts on the Ice Recrystallization Inhibition Activity of Antifreeze (Glyco)Proteins

Author:

Surís-Valls Romà,Voets IljaORCID

Abstract

Antifreeze (glyco)proteins (AF(G)Ps) have received increasing attention as potential cryopreservation agents since their discovery in the 1970s. While cryopreservation strategies for specific cells (such as red blood cells) are successful and widely implemented, preservation of other cell types, tissues and whole organs remains challenging. This is due to the multifactorial nature of the freeze-thaw damage, the complexity of preserving biological matter and the (country-to-country) variability of the employed procedures and regulations. AF(G)Ps are well-known for their ability to modulate ice crystal growth morphology and ice recrystallization inhibition (IRI), both of which are considered key contributors to freeze-thaw damage. To date, however, the impact of AF(G)Ps on cell survival remains at best partially understood as conflicting results on the benefits or disadvantages of including AF(G)P in cryopreservation strategies remain unelucidated. We hypothesize that variability in the additives in the cryopreservation media contributes to the observed discrepancies. To critically examine this idea, we monitored the inhibition of ice recrystallization by AF(G)P in the presence of various salts using a quantitative analysis of optical microscopy images via the Lifshitz-Slyozov-Wagner (LSW) theory for Oswald ripening. We found that the addition of salts, which are used in culture and cryopreservation media, enhances the IRI activity of AF(G)Ps, and that the magnitude of the enhancement was in line with the Hofmeister series. The size of ice crystals grown in AFGP1–5 and type III AFP samples containing chloride, phosphate and citrate ions were statistically smaller after 90 min of incubation than crystals grown in the absence of these salts. The ice recrystallization rates (kd) of AFGP1–5 and type III AFP samples prepared at a fixed overall ionic strength of 100 mM progressively decreased following the Hofmeister series for anions. Our results demonstrate that the performance of AF(G)Ps is significantly influenced by additives present in common cryopreservation media. It is thus important to conduct excipient compatibility experiments to identify potential incompatibilities between additives and AF(G)Ps in cryopreservation formulations.

Funder

European Research Council

Publisher

MDPI AG

Subject

Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3