Abstract
The classical nucleation theory shows that bulk water freezing does not occur at temperatures above ≈ −30 °C, and that at higher temperatures ice nucleation requires the presence of some ice-binding surfaces. The temperature and rate of ice nucleation depend on the size and level of complementarity between the atomic structure of these surfaces and various H-bond-rich/depleted crystal planes. In our experiments, the ice nucleation temperature was within a range from −8 °C to −15 °C for buffer and water in plastic test tubes. Upon the addition of ice-initiating substances (i.e., conventional AgI or CuO investigated here), ice appeared in a range from −3 °C to −7 °C, and in the presence of the ice-nucleating bacterium Pseudomonas syringae from −1 °C to −2 °C. The addition of an antifreeze protein inhibited the action of the tested ice-initiating agents.
Funder
Russian Science Foundation
Subject
Molecular Biology,Biochemistry
Reference58 articles.
1. Melting and Crystal Structure;Ubbelohde,1965
2. Modern Crystallography III
3. Kinetic Theory of Liquids;Frenkel,1955
4. Kinetics of First Order Phase Transitions;Slezov,2009
5. Two-dimensional melting
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献