Abstract
This work proposes the use of a specialized algorithm based on evolutionary computation to the global MPPT regulation of panel of thermoelectric modules connected serially in numerous string sections. Each section of the thermovoltaic panel is equipped with local DC/DC converter controlled by the proposed algorithm and finally this allows the optimization of the total efficiency of conversion. Evolutionary computations adjust PWM signals of switching waveforms of DC/DC sectional simple boost converters, which have outputs configured in parallel. It gives the chance to obtain the highest level of electric energy harvested, i.e., thanks to boost converting operational points precise adaptation to the system temperature profile as well as electric load level. The simulation results of the proposed evolutionary technique confirmed the high speed of the MPPT process that is much better than for perturbation and observation, as well as incremental conductance methods, and it assures concurrent optimization of numerous PWM signals. Next, the work shows practical optimization results achieved by the proposed algorithm implemented to microcontroller module controlling the DC/DC converter during thermal to electric conversion experiment. A laboratory thermovoltaic panel was constructed from a string of Peltier modules and radiator that assured passive cooling. The measurements obtained once more proved the MPPT evolutionary regulation properness and its adaptation effectiveness for different resistive test loads.
Funder
Silesian University of Technology
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science