Simulink Model of a Thermoelectric Generator for Vehicle Waste Heat Recovery

Author:

Burnete Nicolae VladORCID,Mariasiu FlorinORCID,Moldovanu DanORCID,Depcik ChristopherORCID

Abstract

More than 50% of the energy released through combustion in the internal combustion engine (ICE) is rejected to the environment. Recovering only a part of this energy can significantly improve the overall use of resources and the economic efficiency of road transport. One solution to recoup a part of this otherwise wasted thermal energy is to use thermoelectric generator (TEG) modules for the conversion of heat directly into electricity. To aid in development of this technology, this effort covers the derivation of a respectively simple steady-state Simulink model that can be utilized to estimate and optimize TEG system performance for ICEs. The model was validated against experimental data found in literature utilizing water cooling for the cold side. Overall, relatively good agreement was found with the maximum error in generated power around 10%. Following, it was investigated whether air can be used as a cooling medium. It was established that, at the same temperature as the water (18.4 °C), a flow velocity of 13.1 m/s (or 47.2 km/h) is required to achieve a similar cold junction temperature and power output. Subsequently using the model with air cooling, the performance of a TEG installed on a heavy-duty vehicle traveling at 50, 80, 90, and 120 km/h under different ambient temperatures was analyzed. It was determined that both a lower temperature and a higher flow velocity can improve power output. A further increase of the power output requires a larger temperature gradient across the module, which can be achieved by a higher heat input on the hot side.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3