Abstract
Ship fouling not only increases ship resistance and fuel consumption but is equally a type of biological invasion, which causes severe ecological damage. Submerged cavitation jet cleaning is an environmentally friendly, high-efficiency, and energy-saving cleaning method. The nozzle structure has an essential influence on the cleaning effect. Thus, a two-throat nozzle was designed for application in submerged cavitation jet cleaning. To investigate the cavitation characteristics of the two-throat nozzle, a high-speed photographic visualization experiment and an erosion experiment concerning the submerged cavitation jet were carried out in this study. The frame-difference method (FDM) was used to analyze the dynamic changes in the cavitation cloud in a single period. The dynamic changes in the cavitation cloud and the characteristics of the submerged cavitation jet were investigated under different inlet pressures. The sample mass loss and the macroscopic and microscopic changes in surface morphology were used to evaluate the cavitation intensity of the two-throat nozzle submerged jet. The experimental results demonstrate that the two-throat nozzle has a good cavitation effect, and the cavitation cloud of the submerged jet has obvious periodicity. With the increase in inlet pressure, the length, width, and area of the cavitation cloud continue to increase, and the shedding frequency of the cavitation cloud continues to decrease. The intensity of cavitation erosion is related to target distance and impact time. There is an appropriate target distance by which to achieve the optimal cavitation effect. The collapse of cavitation bubbles near the sample surface is related to the erosion distribution on the sample surface. Moreover, the magnitude of the absolute values of the root-mean-square surface roughness and surface skewness increase with cavitation intensity. The results in this paper are helpful for a better understanding of the cavitation characteristics of the two-throat nozzle submerged jet.
Funder
National Natural Science Foundation of China
Fundamental Research Funds for the Central Universities
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献