Study on Cleaning Effect of Different Water Flows on the Pulsed Cavitating Jet Nozzle

Author:

Liu Chengting12ORCID,Liu Gang12ORCID,Yan Zuoxiu12ORCID

Affiliation:

1. School of Petroleum Engineering, Northeast Petroleum University, Daqing 163318, China

2. Key Laboratory of Enhanced Oil Recovery, Northeast Petroleum University, Ministry of Education, Daqing, China

Abstract

The method of cleaning by self-excited pulsed cavitating jet was proposed according to cleaning characteristics and requirements of large storage equipment. This method has many advantages compared with other cleaning methods. In order to achieve the optimum cleaning effects, experimental research on working status of the nozzle at different flow rates was conducted and analysis was carried out from the following four aspects: cavitation morphology, pressure pulse frequency, velocity fluctuation amplitude, and erosion effect. The research results showed that flushing effects in the nozzle without cavitation were far below those with cavitation; when the flow rate increased to over 2.7 m3/h, cavitation began to appear in the chamber. When Q = 7.2 m3/h, the velocity fluctuation amplitude was about 17.25 m and pressure fluctuation occurred for 86 times (maximum) within 1 s. During the experiment on erosion effects, the flow rate had little influence on outside diameter of the erosion circle. The erosion rate increased with the increase of the flow rate, reached the peak value at Q = 7.2 m3/h, but slightly decreased subsequently.

Funder

PetroChina Innovation Foundation

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3