A Two-Stage Industrial Defect Detection Framework Based on Improved-YOLOv5 and Optimized-Inception-ResnetV2 Models

Author:

Li Zhuang,Tian Xincheng,Liu Xin,Liu Yan,Shi Xiaorui

Abstract

Aiming to address the currently low accuracy of domestic industrial defect detection, this paper proposes a Two-Stage Industrial Defect Detection Framework based on Improved-YOLOv5 and Optimized-Inception-ResnetV2, which completes positioning and classification tasks through two specific models. In order to make the first-stage recognition more effective at locating insignificant small defects with high similarity on the steel surface, we improve YOLOv5 from the backbone network, the feature scales of the feature fusion layer, and the multiscale detection layer. In order to enable second-stage recognition to better extract defect features and achieve accurate classification, we embed the convolutional block attention module (CBAM) attention mechanism module into the Inception-ResnetV2 model, then optimize the network architecture and loss function of the accurate model. Based on the Pascal Visual Object Classes 2007 (VOC2007) dataset, the public dataset NEU-DET, and the optimized dataset Enriched-NEU-DET, we conducted multiple sets of comparative experiments on the Improved-YOLOv5 and Inception-ResnetV2. The testing results show that the improvement is obvious. In order to verify the superiority and adaptability of the two-stage framework, we first test based on the Enriched-NEU-DET dataset, and further use AUBO-i5 robot, Intel RealSense D435 camera, and other industrial steel equipment to build actual industrial scenes. In experiments, a two-stage framework achieves the best performance of 83.3% mean average precision (mAP), evaluated on the Enriched-NEU-DET dataset, and 91.0% on our built industrial defect environment.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference31 articles.

1. Knowledge of ultra-high-strength steel used in aerospace and other industries;Bo;Heat Treat.,2019

2. Ultrasound image defect classification based on genetic algorithm optimized support vector machine;Zhang;Acta Metrol.,2019

3. A random forest classification algorithm for polarized SAR images with comprehensive multi-features;Xu;J. Remote Sens.,2019

4. A Defect-Detection Method of Split Pins in the Catenary Fastening Devices of High-Speed Railway Based on Deep Learning

5. Machine vision and nondestructive inspection of steel plate surface defects;Wu;Nondestruct. Test.,2000

Cited by 76 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3