Affiliation:
1. Information and Computer Science Department King Fahd University of Petroleum & Minerals Dhahran Saudi Arabia
2. Interdisciplinary Research Centre for Intelligent Secure Systems King Fahd University of Petroleum & Minerals Dhahran Saudi Arabia
3. SDAIA‐KFUPM Joint Research Center for Artificial Intelligence King Fahd University of Petroleum & Minerals Dhahran Saudi Arabia
4. Institute of Computer Science and Information Technology The University of Agriculture Peshawar Pakistan
5. College of Computer and Information Sciences Imam Mohammad Ibn Saud Islamic University (Imsiu) Riyadh Saudi Arabia
6. Department of Embedded Systems Engineering Incheon National University Incheon South Korea
Abstract
AbstractAlzheimer's disease (AD) is a major global health concern that affects millions of people globally. This study investigates the technical challenges in AD analysis and provides a thorough analysis of AD, emphasizing the disease's worldwide effects as well as the predicted increase. It explores the technological difficulties associated with AD analysis, concentrating on the shift in automated clinical diagnosis using MRI data from conventional machine learning to deep learning techniques. This study advances our knowledge of the effects of AD and provides new developments in deep learning for precise diagnosis, providing insightful information for both clinical and future research. The research introduces an innovative deep learning model, leveraging YOLOv5 and variants of YOLOv8, to classify AD images into four (NC, EMCI, LMCI, AD) categories. This study evaluates the performance of YOLOv5 which achieved high accuracy (97%) in multi‐class classification (classes 0 to 3) with precision, recall, and F1‐score reported for each class. YOLOv8 (Small) and YOLOv8 (Medium) models are also assessed for Alzheimer's disease diagnosis, demonstrating accuracy of 97% and 98%, respectively. Precision, recall, and F1‐score metrics provide detailed insights into the models' effectiveness across different classes. Comparative analysis against a transfer learning model reveals YOLOv5, YOLOv8 (Small), and YOLOv8 (Medium) consistently outperforming across six binary classifications related to cognitive impairment. These models show improved sensitivity and accuracy compared to baseline architectures from [32]. In AD/NC classification, YOLOv8 (Medium) achieves 98.43% accuracy and 97.45% sensitivity, for EMCI/LMCI classification, YOLOv8 (Medium) also excels with 92.12% accuracy and 90.12% sensitivity. The results highlight the effectiveness of YOLOv5 and YOLOv8 variants in neuroimaging tasks, showcasing their potential in clinical applications for cognitive impairment classification. The proposed models showcase superior performance, achieving high accuracy, sensitivity, and F1‐scores, surpassing baseline architectures and previous methods. Comparative analyses highlight the robustness and effectiveness of the proposed models in AD classification tasks, providing valuable insights for future research and clinical applications.
Funder
King Fahd University of Petroleum and Minerals