Adaptive Cruise Control with Look-Ahead Anticipation for Driving on Freeways

Author:

Kamal Md Abdus SamadORCID,Hashikura Kotaro,Hayakawa TomohisaORCID,Yamada Kou,Imura Jun-ichiORCID

Abstract

This paper presents Adaptive Cruise Control (ACC) with look-ahead anticipation, based on the model of ACC used in recent commercial vehicles, to take early decisions in driving a vehicle on the freeway. The existing ACC found in the high-end cars has limited operating range as it often fails to respond smoothly in advance behind a decelerating vehicle. Although advanced techniques, such as model predictive control (MPC), can significantly improve a vehicle’s driving performance, they are associated with high computational complexity and have limited scopes for practical implementation. The proposed look-ahead anticipatory scheme of ACC predicts the relative states of the preceding vehicle using a conditional persistence prediction technique in an adaptive short horizon. With negligible computation cost, it determines the control input using parametric functions prudently for improving driving performance. The proposed scheme is evaluated on multiple vehicles in typical traffic scenarios to examine individual driving behavior and the stability of a vehicle string. Finally, we investigate the influences of a small part of vehicles with the proposed ACC on overall traffic using the AIMSUN traffic simulator and compare performances of overall traffic.

Funder

Japan Society for the Promotion of Science

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. SDC-Net++: End-to-End Crash Detection and Action Control for Self-Driving Car Deep-IoT-Based System;Sensors;2024-06-12

2. Toward ML-Based Application for Vehicles Operation Cost Management;Lecture Notes in Mechanical Engineering;2024

3. Object Detection, Recognition, and Tracking Algorithms for ADASs—A Study on Recent Trends;Sensors;2023-12-31

4. Design and Implementation of Cascaded Ant Colony Optimization Coupled with Sliding Mode Controller for Autonomous Cruise Control System;2023 IEEE International Conference on Energy Technologies for Future Grids (ETFG);2023-12-03

5. Design and Implementation of Biological Inspired Algorithm Coupled with Sliding Mode Controller for Autonomous Cruise Control System;2023 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech);2023-11-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3