SDC-Net++: End-to-End Crash Detection and Action Control for Self-Driving Car Deep-IoT-Based System

Author:

Tolba Mohammed Abdou1ORCID,Kamal Hanan Ahmed1

Affiliation:

1. Department of Electronics and Communications Engineering, Faculty of Engineering, Cairo University, Cairo 12613, Egypt

Abstract

Few prior works study self-driving cars by deep learning with IoT collaboration. SDC-Net, which is an end-to-end multitask self-driving car camera cocoon IoT-based system, is one of the research areas that tackles this direction. However, by design, SDC-Net is not able to identify the accident locations; it only classifies whether a scene is a crash scene or not. In this work, we introduce an enhanced design for the SDC-Net system by (1) replacing the classification network with a detection one, (2) adapting our benchmark dataset labels built on the CARLA simulator to include the vehicles’ bounding boxes while keeping the same training, validation, and testing samples, and (3) modifying the shared information via IoT to include the accident location. We keep the same path planning and automatic emergency braking network, the digital automation platform, and the input representations to formulate the comparative study. The SDC-Net++ system is proposed to (1) output the relevant control actions, especially in case of accidents: accelerate, decelerate, maneuver, and brake, and (2) share the most critical information to the connected vehicles via IoT, especially the accident locations. A comparative study is also conducted between SDC-Net and SDC-Net++ with the same input representations: front camera only, panorama and bird’s eye views, and with single-task networks, crash avoidance only, and multitask networks. The multitask network with a BEV input representation outperforms the nearest representation in precision, recall, f1-score, and accuracy by more than 15.134%, 12.046%, 13.593%, and 5%, respectively. The SDC-Net++ multitask network with BEV outperforms SDC-Net multitask with BEV in precision, recall, f1-score, accuracy, and average MSE by more than 2.201%, 2.8%, 2.505%, 2%, and 18.677%, respectively.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3