Abstract
Groundwater table has an important role in soil–structure interaction problems. However, analysis of laterally loaded single piles has often been conducted by solely considering the mechanics of the soil skeleton or decoupling the interactive mechanics of the soil skeleton and the fluid flux; in other words, most analyses were performed without taking into consideration the coupling effect between the soil skeleton and the fluid flux. To improve our understanding of the hydromechanical coupling effect on laterally loaded single piles, a series of finite element study on laterally loaded single piles in saturated porous media was conducted. The effect of pile cap geometries, cap widths, cap embedment depths, and pile lengths, on the response of laterally loaded single piles was also studied. The loading condition of the pile was found to have a significant effect on the generation of excess pore-water pressure. The lateral displacement and bending moment computed at the maximum excess pore water pressure, which in turn, is equivalent to an undrained analysis, produced the minimum responses among all the other loading conditions. The effect of pile cap geometries was found to be much less significant than anticipated.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献