New Insights into Radio-Resistance Mechanism Revealed by (Phospho)Proteome Analysis of Deinococcus Radiodurans after Heavy Ion Irradiation

Author:

Liu Shihao1,Wang Fei1,Chen Heye1,Yang Zhixiang2,Ning Yifan12,Chang Cheng1,Yang Dong1

Affiliation:

1. State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China

2. College of Life Sciences, Hebei University, Baoding 071002, China

Abstract

Deinococcus radiodurans (D. radiodurans) can tolerate various extreme environments including radiation. Protein phosphorylation plays an important role in radiation resistance mechanisms; however, there is currently a lack of systematic research on this topic in D. radiodurans. Based on label-free (phospho)proteomics, we explored the dynamic changes of D. radiodurans under various doses of heavy ion irradiation and at different time points. In total, 2359 proteins and 1110 high-confidence phosphosites were identified, of which 66% and 23% showed significant changes, respectively, with the majority being upregulated. The upregulated proteins at different states (different doses or time points) were distinct, indicating that the radio-resistance mechanism is dose- and stage-dependent. The protein phosphorylation level has a much higher upregulation than protein abundance, suggesting phosphorylation is more sensitive to irradiation. There were four distinct dynamic changing patterns of phosphorylation, most of which were inconsistent with protein levels. Further analysis revealed that pathways related to RNA metabolism and antioxidation were activated after irradiation, indicating their importance in radiation response. We also screened some key hub phosphoproteins and radiation-responsive kinases for further study. Overall, this study provides a landscape of the radiation-induced dynamic change of protein expression and phosphorylation, which provides a basis for subsequent functional and applied studies.

Funder

National Natural Science Foundation of China

Beijing Nova Program

fund project in the technology field of the basic strengthening plan

State Key Laboratory of Proteomics

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3