Genome-Wide Identification and Characterization of WRKY Transcription Factors in Betula platyphylla Suk. and Their Responses to Abiotic Stresses

Author:

Yu Jiajie1,Zhang Xiang1,Cao Jiayu1,Bai Heming1,Wang Ruiqi1ORCID,Wang Chao1,Xu Zhiru12,Li Chunming1,Liu Guanjun1

Affiliation:

1. State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China

2. College of Life Science, Northeast Forestry University, Harbin 150040, China

Abstract

The WRKY transcription factor (TF) family is one the largest plant-specific transcription factor families. It has been proven to play significant roles in multiple plant biological processes, especially stress response. Although many WRKY TFs have been identified in various plant species, WRKYs in white birch (Betula platyphylla Suk.) remain to be studied. Here, we identified a total of 68 BpWRKYs, which could be classified into four main groups. The basic physiochemical properties of these TFs were analyzed using bioinformatics tools, including molecular weight, isoelectric point, chromosome location, and predicted subcellular localization. Most BpWRKYs were predicted to be located in the nucleus. Synteny analysis found 17 syntenic gene pairs among BpWRKYs and 52 syntenic gene pairs between BpWRKYs and AtWRKYs. The cis-acting elements in the promoters of BpWRKYs could be enriched in multiple plant biological processes, including stress response, hormone response, growth and development, and binding sites. Tissue-specific expression analysis using qRT-PCR showed that most BpWRKYs exhibited highest expression levels in the root. After ABA, salt (NaCl), or cold treatment, different BpWRKYs showed different expression patterns at different treatment times. Furthermore, the results of the Y2H assay proved the interaction between BpWRKY17 and a cold-responsive TF, BpCBF7. By transient expression assay, BpWRKY17 and BpWRKY67 were localized in the nucleus, consistent with the previous prediction. Our study hopes to shed light for research on WRKY TFs and plant stress response.

Funder

Integrated green prevention and control technology of poplar protection forest major diseases and pests during the whole growth period

National Key Research and Development Program of China

Science Foundation project of Heilongjiang

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3