Tailoring Properties of Hyaluronate-Based Core–Shell Nanocapsules with Encapsulation of Mixtures of Edible Oils

Author:

Bednorz Justyna123,Smela Krzysztof4,Zapotoczny Szczepan1ORCID

Affiliation:

1. Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland

2. CHDE Polska S.A., Biesiadna 7, 35-304 Rzeszow, Poland

3. Doctoral School of Exact and Natural Sciences, Jagiellonian University, Prof. St. Lojasiewicza 11, 30-348 Krakow, Poland

4. Independent Researcher, Chopin St. 7, 35-055 Rzeszow, Poland

Abstract

Dispersions of core–shell nanocapsules (nanoemulsion) composed of liquid oil cores and polysaccharide-based shells were fabricated with emulsification using various mixtures of edible oils and amphiphilic hyaluronate derivatized with 12-carbon alkyl chains forming the shells. Such nanocapsules, with typical diameters in the 100–500 nm range, have been previously shown as promising carriers of lipophilic bioactive compounds. Here, the influence of some properties of the oil cores on the size and stability of the capsules were systematically investigated using oil binary mixtures. The results indicated that, in general, the lower the density, viscosity, and interfacial tension (IFT) between the oil and aqueous polymer solution phases, the smaller the size of the capsules. Importantly, an unexpected synergistic reduction of IFT of mixed oils was observed leading to the values below the measured for individual oils. Such a behavior may be used to tailor size but also other properties of the nanocapsules (e.g., stability, solubility of encapsulated compounds) that could not be achieved applying just a single oil. It is in high demand for applications in pharmaceutical or food industries and opens opportunities of using more complex combinations of oils with more components to achieve an even further reduction of IFT leading to even smaller nanocapsules.

Funder

Ministry of Education and Science

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3