Application of Unsupervised Machine Learning Classification for the Analysis of Driver Behavior in Work Zones in the State of Qatar

Author:

Khanfar Nour O.,Ashqar Huthaifa I.ORCID,Elhenawy MohammedORCID,Hussain QinaatORCID,Hasasneh Ahmad,Alhajyaseen Wael K. M.ORCID

Abstract

Work zone areas are commonly known as crash-prone areas. Thus, they usually receive high priority by road operators as drivers and workers have higher chances of being involved in road crashes. The paper aims to investigate driving behavior in work zones using unsupervised machine learning and vehicle kinematic data. A dataset of 67 participants was gathered through an experiment using a driving simulator located at the Qatar Transportation and Traffic Safety Center (QTTSC). The study considered two different work zone scenarios where the leftmost lane was closed for maintenance. In the first scenario, drivers drove on the leftmost lane (Drive 1), while in the second, they drove on the second leftmost lane (Drive 2). The results show that the number of aggressive and conservative drivers was surprisingly more than normal drivers, as most participants either cautiously drove through or failed to drive without being aggressive. The results also show that drivers acted more aggressively in the leftmost lane rather than in the second leftmost lane. We also found that female drivers and drivers with relatively little driving experience were more likely to be aggressive as they drove through a work zone. The framework was found to be promising and can help policymakers take optimal safety countermeasures in work zones during construction.

Funder

Qatar National Research Fund

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3