Affiliation:
1. Faculty of Architecture, Civil and Transportation Engineering, Beijing University of Technology, Beijing 100124, China
Abstract
Significant changes in road and traffic conditions in transition areas are key to traffic organization and guaranteeing safety in freeway work zones. Currently, most of the related studies on transition area use theoretical calculations, traffic and driving simulations, and the impact of different transition area conditions on drivers’ psychophysiological indicators and driving behavior are unclear. In this paper, the gap acceptance theory was used to establish a calculation method of the transition area length, and the transition area length was calculated under different closed lane widths, speed limits, and traffic volumes. Based on the results of our theoretical calculations, naturalistic driving experiments were conducted with 48 participants in 12 scenarios involving 3 lane closure forms and 4 transition area lengths, and the relationship of transition area with driving workload and vehicle speed was determined. A transition area that was too short or too long increased traffic safety risks. The overall experimental results were consistent with the theoretical calculation length, and the theoretical calculation model was reliable. Compared to unaffected straight-through vehicles, merging vehicles and vehicles affected by merging have lower speeds, higher driving workloads, and increased traffic safety risks. An increase in the number of lanes in the transition area will result in increased driving workloads and vehicle speeds. Based on the changes in vehicle deceleration points and driving workloads, the affected area of the transition area was measured. When the speed limit was 60 km/h, the upstream affected areas of the transition areas with four, three, and two lanes were 1000 m, 850 m, and 700 m, and the downstream affected areas were 450 m, 400 m, and 350 m. These research results can provide a reference for improving traffic organization and guaranteeing safety in freeway work zones.
Funder
key field research and development plan projects of the Department of Science and Technology of Guangdong Province
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献