Impact of Mineral and Organic Fertilizer Management on the Performance of Oat-Chickpea Cropping Systems

Author:

Koireng R. Joseph,Shamurailatpam Diana,Devi T. Sunanda,Singh S. Dayananda,Senjam Pushparani,Yumnam SonikaORCID,Karam Nilima,Devi L. Sophia,Mary Kholu

Abstract

In India, particularly in Manipur, the cultivation of fodder crops is given the least attention as most of the agricultural land is devoted to food crops to meet the food demand of our enormous population. As a result, livestock productivity of the state is suffering. In addition, cultivation of single crops repeatedly over years using inorganic sources of nutrients as inputs for the growth and development of the crops in the same field leads to low production at the cost of soil quality deterioration and environmental issues. Therefore, an experiment was carried out to evaluate the productivity of the oat–chickpea intercropping system to assess the effect of mineral and organic fertilizer management using factorial randomized block design with three replications comprising four levels of the cropping system (CS1-sole oat, CS2-sole chickpea, CS3-intercropping of oat with chickpea in a 3:2 row ratio and CS4-intercropping of oat with chickpea in a 3:3 row ratio) in the main plot and three levels of nutrient management (F1—Full RDF(recommended dose of fertilizer)through inorganic source, F2—50% N of RDF + 50% N through FYM(farm yard manure)and F3—50% N of RDF + 50%N through vermicompost) in the sub plot to study their productivity and economic feasibility. Three years of pooled results revealed that the maximum green fodder yield (50.88 t/ha), dry matter yield (11.84 t/ha) and plant height (120.69 cm) of oat was recorded in CS1, which is among the intercropping systems with the highest green fodder yield (40.11 t/ha) and has a plant height of 115.06 cm; this was recorded in CS3 and the highest dry matter yield (8.44 t/ha) was recorded in CS4. Application of F3 to oats gave the highest green fodder yield, dry matter yield and maximum plant height in all three years of the growing period. The maximum seed yield (1.86 t/ha), harvest index (46.05%), stover yield (2.15 t/ha/ha) and plant height (53.55 cm) of chickpea was obtained in CS2, but among the intercropping system, CS4 was statistically significant at a 5% probability level and was superior in seed yield and stover yield, as compared to the CS3cropping system. The application of F2 showed a higher seed yield and stover yield of chickpea. The green forage equivalent yield (85.37 t/ha), land equivalent ratio (LER) (1.63), gross return ($1902/ha), net returns ($1436/ha) and benefit cost ratio (4.19) were recorded to be the highest in the CS4 cropping system of oat and chickpea. This study concludes that CS4, in combination with the application of F3, can be recommended as it provides a higher green forage equivalent yield, LER and other economic benefits, as compared to other cropping systems and nutrient management practices.

Funder

All India Coordinated Research Projects on forage crops, IGFRI, Jhansi

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Reference41 articles.

1. Effect of integrated nutrient and micronutrients treatment on plant growth parameters in oat cultivar (Avena sativa L.);Int. J. Plant Sci.,2014

2. Reap more biomass through diversity in forestry;Intensive Agric.,1993

3. Effect of nitrogen, bio-fertilizer and farm yard manure on yield and nutrient uptake in oat (Avenasativa L.);Bioscan,2016

4. Soil properties and yield of fodder oat (Avena sativa L.) as influenced by sources of nutrient and cutting management;Forage Res.,2007

5. Cereal/legume rotation effects on rhizosphere bacterial community structure in West African soils;Biol. Fertil. Soils,2003

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Sustainable Fertilizers in Coffee Plantation: Hybrid Recommendation for Agricultural Producers;2023 5th International Conference on Inventive Research in Computing Applications (ICIRCA);2023-08-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3