An Improved Data-Driven Integral Sliding-Mode Control and Its Automation Application

Author:

Xu Feng12,Sui Zhen2,Wang Yulong3,Xu Jianliang1

Affiliation:

1. School of Mechanical and Electrical Engineering, Quzhou College of Technology, Quzhou 324000, China

2. College of Communication Engineering, Jilin University, Changchun 130022, China

3. Quzhou Special Equipment Inspection Center, Quzhou 324000, China

Abstract

Circulating fluidized bed (CFB) boilers are widely used in industrial production due to their high combustion efficiency, low pollutant emissions and wide load-adjustment range. However, the water-level-control system of a CFB boiler exhibits time-varying behavior and nonlinearity, which affect the control performance of the industrial system. This paper proposes a novel data-driven adaptive integral sliding-mode control (ISMC) method for the CFB control system with external disturbances. Firstly, the scheme designs a discrete ISMC law based on the full-format dynamic linearization (FFDL) data model, which is equivalent to a nonlinear system. Furthermore, a new reaching law is proposed to quickly drive the system state onto the sliding-mode surface. The improved ISMC control scheme only utilizes the input–output data during the design process and does not require model information. After theoretically verifying the stability of the method proposed in this paper, it is further applied in MIMO systems. Finally, the control and practical effects of this method are evaluated by using the DHX25-1.25 CFB boiler installed in the special-equipment testing center. The experimental results show that, compared with the traditional sliding-mode control (SMC) and model-free adaptive-control (MFAC) methods, the improved control method can quickly track the given signal and exhibit resistance to noise interference. Furthermore, it can rapidly respond to changes in the working conditions of the CFB system.

Funder

Quzhou City Science and Technology Plan project

General Research Project of the Zhejiang Provincial Department of Education

Quzhou Vocational and Technical College university-level scientific research project

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3