Semi-Symmetrical, Fully Convolutional Masked Autoencoder for TBM Muck Image Segmentation

Author:

Lei Ke1,Tan Zhongsheng1,Wang Xiuying1,Zhou Zhenliang1

Affiliation:

1. Key Laboratory of Urban Underground Engineering of Ministry of Education, Beijing Jiaotong University, Beijing 100044, China

Abstract

Deep neural networks are effectively utilized for the instance segmentation of muck images from tunnel boring machines (TBMs), providing real-time insights into the surrounding rock condition. However, the high cost of obtaining quality labeled data limits the widespread application of this method. Addressing this challenge, this study presents a semi-symmetrical, fully convolutional masked autoencoder designed for self-supervised pre-training on extensive unlabeled muck image datasets. The model features a four-tier sparse encoder for down-sampling and a two-tier sparse decoder for up-sampling, connected via a conventional convolutional neck, forming a semi-symmetrical structure. This design enhances the model’s ability to capture essential low-level features, including geometric shapes and object boundaries. Additionally, to circumvent the trivial solutions in pixel regression that the original masked autoencoder faced, Histogram of Oriented Gradients (HOG) descriptors and Laplacian features have been integrated as novel self-supervision targets. Testing shows that the proposed model can effectively discern essential features of muck images in self-supervised training. When applied to subsequent end-to-end training tasks, it enhances the model’s performance, increasing the prediction accuracy of Intersection over Union (IoU) for muck boundaries and regions by 5.9% and 2.4%, respectively, outperforming the enhancements made by the original masked autoencoder.

Funder

Science and Technology Major Project of Xinjiang Uygur Autonomous Region

China Postdoctoral Science Foundation

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3